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Introduction

Steady 
ow over the leading portion of a multicomponent airfoil section is studied us-

ing computational 
uid dynamics (CFD) employing an unstructured grid. To simplify the

problem, only the inviscid terms are retained from the Reynolds-averaged Navier-Stokes

equations|leaving the Euler equations. The algorithm is derived using the �nite-volume

approach, incorporating explicit time-marching of the unsteady Euler equations to a time-

asymptotic, steady-state solution. The inviscid 
uxes are obtained through either of two

approximate Riemann solvers: Roe's 
ux di�erence splitting or van Leer's 
ux vector split-

ting. Results are presented which contrast the solutions given by the two 
ux functions as

a function of Mach number and grid resolution. Additional information is presented con-
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cerning code veri�cation techniques, 
ow recirculation regions, convergence histories, and

computational resources.

Nomenclature

Acell Cell area

ak Wave speed

c Speed of sound

e Speci�c energy

F;G Cartesian inviscid 
ux vectors

h Speci�c enthalpy

hk Component of H vector

H Locally face-normal 
ux vector

L1 In�nity error norm

L2 Least-squares error norm

M Mach number

p Pressure

R Matrix of wave signature column vectors

Rk Column vector component of R

�s Length of cell side

t Time

�t Time step

T Transformation matrix from Cartesian coordinates

u; v Cartesian velocity components
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U Conservative variables

�V Wave strength vector of jumps

x; y Cartesian coordinates

to local normal/tangential coordinates

�m Runge-Kutta coe�cient


 Ratio of speci�c heats

� Polar angle

� Courant number

� Density

� Flux function

Subscripts

( )0 Image cell value

( )1 Interior cell value

( )k Vector component (k=1,2,3,4)

( )
L
States in the \left" cell

( )R States in the \right" cell

( )
n
Normal component

( )
t
Tangent component

( )
1
Freestream quantity
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Superscripts

( )
n
; ( )

n+1
Time levels

(^) Roe-averaged quantity

( )
�

Smoothed values

( )
+

Right-traveling information

( )
�

Left-traveling information

Governing Equations

Two-dimensional, unsteady 
ow is described by the following conservation laws

@

@t
U+

@

@x
F+

@

@y
G = 0

where the state vector is given by

U =

0
BBBBBBBBBBBBB@

�

�u

�v

�e

1
CCCCCCCCCCCCCA
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and the inviscid 
uxes are

F =

0
BBBBBBBBBBBBB@

�u

�u
2 + p

�uv

�uh

1
CCCCCCCCCCCCCA

G =

0
BBBBBBBBBBBBB@

�v

�uv

�v
2 + p

�vh

1
CCCCCCCCCCCCCA

The equation of state closes the system

e =
p

(
 � 1) �
+
1

2

�
u
2 + v

2
�

and for convenience, enthalpy is de�ned as

h = e+
p

�

Note: for air: 
 = 1:4.

Flux Functions

The inviscid 
uxes were computed using two di�erent upwind schemes: 
ux di�erence

splitting (FDS) of Roe1 and 
ux vector splitting (FVS) of van Leer.2 Both techniques are

outlined below.
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van Leer's Flux Vector Splitting

For van Leer's 
ux vector splitting scheme, the inviscid portion of the 
uxes across a

cell face is given by

� (UL;UR) = T�1
�
H+ (UL) +H� (UR)

�

where T�1 is the inverse transformation from cell face oriented coordinates to Cartesian

coordinates

T�1 =

2
66666666666664

1 0 0 0

0 sin� cos� 0

0 �cos� sin� 0

0 0 0 1

3
77777777777775

The 
uxes are split into right-traveling and left-traveling based on the cell-centered,

face-normal Mach number, �.e.,

Mn � 1 H+ = H (UL) H� = 0

Mn � �1 H+ = 0 H� = H (UR)

jMnj < 1 H+ = H+ (UL) H� = H� (UR)

where

H (U) =

0
BBBBBBBBBBBBB@

�un

�u
2
n + p

�unut

�unh

1
CCCCCCCCCCCCCA
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and

H� (U) =

0
BBBBBBBBBBBBB@

h
�

1

h
�

2

h
�

3

h
�

4

1
CCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBB@

�1
4
�c (Mn � 1)

2

h
�

1 c [(
 � 1)Mn � 2] =


h
�

1 cMt�
h
�

2
2 
2

2(
2�1)
+

h
�

3

2

2

�
=h

�

1

1
CCCCCCCCCCCCCA

Roe's Flux Di�erence Splitting

For Roe's 
ux di�erence splitting scheme, the 
ux is given as a central di�erence term

in addition to a dissipation term,

� (UL;UR) =
1

2
[� (UL) +� (UR)]�

1

2

4X
k=1

jâkj��VkR̂k

where the wave speeds are

â =

0
BBBBBBBBBBBBB@

ûn � ĉ

ûn

ûn

ûn + ĉ

1
CCCCCCCCCCCCCA

the jumps in the wave strengths are

�V =

0
BBBBBBBBBBBBB@

�p��̂ĉ�un
2ĉ2

�̂�ut
ĉ

��ĉ2��p

ĉ2

�p+�̂ĉ�un
2ĉ2

1
CCCCCCCCCCCCCA

7



and the wave signatures are given by

R̂ =
�
R̂1 R̂2 R̂3 R̂4

�

=

0
BBBBBBBBBBBBB@

1 0 1 1

û� ĉ sin� ĉ cos� û û+ ĉ sin�

v̂ + ĉ cos� ĉ sin� v̂ v̂ � ĉ cos�

ĥ� ûnĉ ûtĉ
1
2
(û2 + v̂

2) ĥ+ ûnĉ

1
CCCCCCCCCCCCCA

where � ( ) represents the jump between the left and right states

� ( ) = ( )
R
� ( )

L

and the (^) quantities are the Roe-averaged variables

�̂ =
p
�L�R

û =

p
�LuL +

p
�RuRp

�L +
p
�R

v̂ =

p
�LvL +

p
�RvRp

�L +
p
�R

ĥ =

p
�LhL +

p
�RhRp

�L +
p
�R

where ĉ, ûn, and ût are calculated directly from �̂, û, v̂, and ĥ, so

p̂ =
(
 � 1) �̂




�
ĥ� 1

2

�
û
2 + v̂

2
��
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ĉ =

s

p̂

�̂

ûn = ûsin� � v̂cos�

ût = ûcos� + v̂sin�

To prevent expansion shocks, an entropy �x is imposed. A smoothed value of jâkj is

de�ned for the acoustic waves ( k = 1 and k = 4 )

jâkj� =

8>>><
>>>:
jâkj jâkj � 1

2
�ak

â2
k

�ak
+ 1

4
�ak jâkj < 1

2
�ak

with

�ak = max (4�ak; 0)

This provides a parabolic (and thus continuous) curve where the wave speeds change signs

(e.g., in a transonic expansion, or at a stagnation point).

Time Integration

Time integration of the governing equations was performed by two methods: forward

Euler and Runge-Kutta, with the time step per cell area was computed via

�t

Acell

=
�

maxfaces [(un + c)�s]

where � is the Courant number.
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Forward Euler

The simplest scheme is that of forward Euler

Un+1 = Un � �t

Acell

R (Un)

where R is the residual of the cell given by

R (Un) =
X
faces

��s

This scheme was only used as a step in the debugging process enroute to the following

multi-stage scheme.

Runge-Kutta

A four-stage, optimally-smoothing, Runge-Kutta, time-stepping scheme due to Tai3 was

implemented as follows

U0 = Un

U1 = U0 � �1
�t

Acell

R
�
U0
�

U2 = U0 � �2
�t

Acell

R
�
U1
�

U3 = U0 � �3
�t

Acell

R
�
U2
�

U4 = U0 � �4
�t

Acell

R
�
U3
�

Un+1 = U4
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with �k = [0:0833; 0:2069; 0:4265; 1:0]. The scheme was nominally run with a Courant num-

ber of 2.0.

Boundary Conditions

The solid wall boundary condition for the airfoil was enforced in a weak sense by setting

the cell-centered state in an image-cell located just inside the solid boundary surface. Physi-

cally, 
ow tangency must be preserved at the wall, as well as a zero pressure gradient normal

to the wall. This image-cell wall-boundary procedure is of �rst order accuracy, because it

neglects the wall curvature. This will introduce inaccuracy in the case of a highly curved

wall that is not resolved by su�ciently �ne cells on the wall. This de�nes the values in the

image-cell as follows

�0 = �1

p0 = p1

(ut)0 = (ut)1

(un)0 = � (un)1

where the ( )0 represents an image-cell quantity and ( )1 is the appropriate interior cell

quantity. The 
ow tangency condition is supplied by merely re
ecting the normal component

of velocity across the boundary face. In more realistic terms, this boundary condition can

be thought of as a symmetry-plane condition.

For the far�eld boundary, the image-cells were speci�ed as freestream conditions, and

the Riemann solver simply picks the proper information to use depending on whether the
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local 
ow is into or out-of the computational domain. Note: a more careful outer boundary

condition for a lifting airfoil would superimpose a potential vortex velocity �eld at the outer

boundary.

Computational Meshes

Three di�erent sizes of meshes were used for this project as indicated in Table 1. The

results were computed on the medium grid unless otherwise speci�ed. Figure 1 shows a view

of each of the grids in the vicinity of the airfoil.

The Debugging Process

Debugging the code is the most labor intensive part of any project|if it is not done in

a logical manner. Steps along the debugging path were as follows:

1. Check pointers for a simple mesh.

2. Verifying cell areas were positive and correct magnitude.

3. Implement only forward Euler time stepping.

4. Setting all boundary conditions to be freestream conditions.

5. Verify both 
ux functions agree with one another.

6. Run angle of attacks: 0�;�45�;�90�.

7. Add solid wall boundary conditions.

8. Run angle of attacks: 0�;�45�;�90�.
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9. Turn on the multistage time stepping.

10. Run angle of attacks: 0�;�45�;�90�.

11. A freestream Mach of 2.5 was run to determine (very readily) that the 
ow was going

in the right direction{indicated by a very pronounced bow shock encompassing the

front of the body.

12. A grid convergence study was conducted to check for consistency of the algorithm{see

following section.

The �nal check was done just from knowledge of how the 
ow should behave{common sense.

Results and Discussion

The 
ow over the leading section of a multicomponent airfoil is computed for three

di�erent freestream Mach numbers: 0.4, 0.8, and 1.2. The Mach 0.8 case was arbitrarily

chosen for a grid convergence study, and it was run on all three meshes: coarse, medium,

and �ne. Each Mach number/grid combination was also run using both of the 
ux functions

discussed previously.

Computational Resources

The code was primarily run on a Hewlett Packard Apollo series 700 workstation. When

compiler-optimized, the code typically ran around 2:6�10�4 CPUs/iteration/cell when using

the FDS 
ux function. For example, a 6124 cell mesh running for 2200 iterations would have

a total CPU time of around 1 hour. Timings for di�erent machines and 
ux functions are
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given in Table 2. As coded, the FVS scheme runs 40 percent faster than the FDS scheme.

Note that the Sun Sparc station runs an order of magnitude slower than either of the HPs.

Mach Number E�ects

Figure 2 depicts Mach contours of the 
ow in the vicinity of the airfoil for three Mach

numbers: 0.4, 0.8, and 1.2. The sonic line and the M = 0:5 contour lines are labeled in each

sub�gure. The remaining contour lines occur at intervals of 0.1 Mach. The results in the

left column of the �gure were produced using Roe's FDS 
ux function and those in the right

column resulted from van Leer's FVS 
ux function. Comparing the left and right columns

of Fig. 2 it is apparent that the two di�erent 
ux functions give nearly identical results

for the 
ow �eld. The only di�erences are minor and occur in the trailing edge/
ap cavity

region which will be investigated further in the following section. The Mach 0.4 case shows a

stagnation region at the leading edge followed by two expansions: one near the leading edge

on the suction side of the airfoil and another just before the 
ap slot on the pressure side.

The Mach 0.8 
ow contains two shocks: a strong one on the upper surface around 90 percent

chord and a smaller one following a transonic expansion in the 
ap cavity. There is also a

signi�cant supersonic \bubble" on the upper surface. At Mach 1.2, the upper surface shock

moves to the trailing edge and forms the familiar \�sh-tail" shock structure. Also apparent

is a weak, detached bow shock standing well o� the leading edge.

Flap Cavity Region

The di�erences between the two 
ux functions become more apparent upon closer in-

spection of the 
ap cavity region. Figure 3 shows streamlines around the trailing portion of

the airfoil for a freestream Mach of 0.8 on all three grids for both 
ux functions. The �gure
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shows the results using Roe's FDS in the left column and results using van Leer's FVS in

the right column. Notice that for all three grids, FDS shows a vortical structure in the 
ap

region, while FVS only shows a vortical structure for the two �ner grids. In addition, FDS

supports a much more complex structure|the �ne mesh showing three interacting recircu-

lation regions. This is a result of the lower dissipation inherent in Roe's FDS scheme as

compared to van Leer's FVS scheme.

Grid Convergence

Shown in Fig. 4 are Mach number contours about the airfoil for three di�erent grids. The


ow has a freestream Mach number of 0.8 and was computed using the FDS 
ux function.

As portrayed in the Fig. 4, the global solution only changes with respect to the thickness of

the shock, implying that the scheme is consistent with respect to the governing equations.

Convergence Histories

A summary of the total number of iterations required to reach an L2 error norm of

the energy equation of 1:0 � 10�6 is shown in Table 3. Roe's FDS scheme takes longer to

converge than van Leer's FVS scheme in every case. This is apparently due to the highly

dissipative nature of FVS which tends to smooth spurious transients. In two cases, the FDS

scheme even fails to converge to the speci�ed error tolerance{more on this to follow.

Shown in Fig. 5 are normalized convergence histories for three di�erent Mach numbers

using the two 
ux functions. (Note: the straight line at the tail of the iteration line-plots is

an artifact of the plotting routine used.) This �gure clearly shows the convergence problem

inherent in this application of Roe's FDS 
ux function. Notice the cyclic behavior of the

error residual. This corresponds to the following cycle: a 
ow feature moving just slightly,
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the disturbance propagating into the rest of the �eld, and a re
ected disturbance telling

the feature to move back. The process repeats with a cycle corresponding to speed of the

disturbance and the number of cells through which it passes. This was veri�ed by halving

the Courant number and noting a increase by a factor of two in the cycle period|the shape

remained the same.

Shown in Fig. 6 and Fig. 7 are the regions which contained the most L1 error norms

during the run for each of two cases. The left side of each �gure is a blocked-contour plot of

the number of times a particular cell was responsible for the L1 error norm. The right side of

the �gures shows the streamlines in the same viewing area. Figure 6 corresponds to a Mach

0.8 
ow using the �ne grid and Fig. 7 corresponds to a Mach 1.2 
ow using the medium grid.

For the Mach 0.8 case, the 
ow features responsible for the convergence problem appears to

be both the transonic expansion on the bottom edge of the 
ap cavity region and the shock

standing on the upper surface of the airfoil. However, in the Mach 1.2 case, the 
ow feature

responsible for the convergence problem is the shock just ahead of the recirculation zone in

the center of the airfoil 
ap cavity region.

An attempt was made to alleviate the convergence problem by \smoothing" the grid

slightly. This was done by telling each node to move toward the centroid formed by its

neighbors. This smoothing process altered the grid enough to stabilize the 
ow features in

slightly di�erent locations|hopefully allowing convergence; but the residual just hung at a

slightly lower error norm.
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Conclusion

The results indicate that an airfoil experiences radically di�erent 
ow �elds as a function

of Mach number. Features range from smooth variations of the 
ow properties at a low Mach

numbers to discontinuous shocks forming at higher Mach numbers. In spite of the range of


ow conditions, both 
ux functions appear to work quite well. Even though FDS is slightly

more expensive than FVS and it experiences convergence di�culties, it appears to do a better

job resolving recirculation regions than does FVS.
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Table 1: Mesh statistics

Name Cells Edges Nodes

coarse 2697 4098 1401

medium 4025 6114 2089

�ne 6124 9308 3184
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Table 2: CPU seconds per iteration per cell

Machine FDS FVS

Sun Sparc 1+ 3:9� 10�3 1:4� 10�3

HP Apollo 710 2:6� 10�4 1:8� 10�4

HP Apollo 720 2:5� 10�4 1:7� 10�4
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Table 3: Number of iterations for convergence

Mach Grid FDS FVS

0.4 medium 2542 2123

0.8 coarse 1738 1496

medium 2733 1909

�ne hung 2396

1.2 medium hung 1823
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(a) Course grid.

(b) Medium grid.

(c) Fine grid.

Figure 1: Computational meshes employed.
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(a) Mach 0.4 FDS. (b) Mach 0.4 FVS.

(c) Mach 0.8 FDS. (d) Mach 0.8 FVS.

(e) Mach 1.2 FDS. (f) Mach 1.2 FVS.

Figure 2: Comparison of Mach number contours for three Mach numbers (�M = 0:1).
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(a) Coarse grid, FDS. (b) Coarse grid, FVS.

(c) Medium grid, FDS. (d) Medium grid, FVS.

(e) Fine grid, FDS. (f) Fine grid, FVS.

Figure 3: Streamline comparison for the 
ap cavity region of the airfoil using three
di�erent grids.
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(a) Course grid.

(b) Medium grid.

(c) Fine grid.

Figure 4: Comparison of Mach number contours for M1 = 0:8 on three di�erent grids
(�M = 0:1).
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(a) L2 error norm FDS.
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(b) L2 error norm FVS.
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(c) L1 error norm FDS.
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(d) L1 error norm FVS.

Figure 5: Normalized convergence histories for three Mach numbers.
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(a) Blocked-contours of L1 norm occur-

rences.
(b) Streamlines in the same vicinity.

Figure 6: Regions responsible for the convergence di�culties of FDS scheme at Mach 0.8,

�ne grid.
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(a) Blocked-contours of L1 norm occur-

rences.
(b) Streamlines in the same vicinity.

Figure 7: Regions responsible for the convergence di�culties of FDS scheme at Mach 1.2,

medium grid.
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